
Search and Rescue Operations Using Robotic
Darwinian Particle Swarm Optimization
Arjun S Kumar, Gayathri Manikutty, Rao R Bhavani

AMMACHI Labs
Amrita School of Engineering, Amritapuri

Amrita Vishwa Vidyapeetham, Amrita University, India
arjunskumar22@gmail.com, gayathri.manikutty@ammachilabs.org, bhavani@amrita.edu

Micael S Couceiro
Ingeniarius, Lda.,

Institute of Systems and Robotics,
Coimbra, Portugal

micael@ingeniarius.pt

Abstract—Swarm robots have the potential to be utilized as
a part of various applications due to the obvious advantages
they offer, namely their resilience, their adaptability to different
environments, and their reduced reliance on humans, particularly
for hazardous or laborious tasks such as search and rescue
operations (SaR). Several particle swarm optimization (PSO)
algorithms have been proposed and developed for controlling
a robot swarm to achieve the desired behavior in SaR op-
erations. In this paper, we present an implementation of the
previously proposed Robotic Darwinian Particle Swarm Opti-
mization (RDPSO); an exploration algorithm which overcomes
the limitation of convergence on multiple targets. A simulation of
a SaR mission is presented using Robot Operating System (ROS)
and Gazebo, with a visualization in Rviz using intensity maps
that mimic real-world scenarios, such as victim identification
by voice/sound intensity mapping, localization of fire source by
temperature intensity mapping, and identification of sources of
radioactive leaks by radiation intensity mapping and experiments
were conducted using RPSO and RDPSO algorithms for two
scenario missions, that is, scenario with two victims and another
with four victims. Experimental result shows that RDPSO has
better performance compared to RPSO for multiple target SaR
operations.

Index Terms—swarm robotics, ros, search and rescue opera-
tions.

I. INTRODUCTION

Multiple robot systems are widely used for search and
rescue operations (SaR),as well as coverage and exploration
due to reduced cost of individual agents, the ability to de-
compose tasks to different agents within the system to cover
wider spaces in a short time span and the inherent system
robustness owing to the redundancies in the system. Typically,
such systems are faster and more efficient than single robot
systems, although the efficiency of such systems is highly
dependent on the algorithms used.

In this paper, we implemented a ROS framework for SaR
operations using autonomous ground swarm robots. We have
simulated a real life search and rescue missions with multiple
static targets and swarm robots. These robots do not have any
prior knowledge of the location of victims or fire outbreaks
in the environment and have only the knowledge of their
initial positions, initial velocities and the environment to be
explored. The universal grid map library is used to create
an intensity map for the autonomous navigation of swarm

robots. Two exploration algorithms were used to perform SaR
operations and evaluated their performance in SaR operations
with multiple targets.

Over the years, the number of solutions proposed in the liter-
ature encompassing an ever-increasing number of cooperating
robots, such as swarm robots, has been rising dramatically.
Swarm robotics is the study of how a large group of simple
robots work together for executing complex tasks which are
difficult for a single robot to execute. Their behavior is inspired
by social biological beings that can execute a task that cannot
be executed alone by an individual being such as an ant
searching for food, bees making hives, etc. In such social
groups, like swarms, there is no leader-follower system and
all individuals work together to finish their task. It is a
decentralized and distributed system where each individual
shares its information with all other members in the swarm
- for example, for executing a particular task, every individual
needs to be able to share information with the swarm [1]. Each
individual is aware of its immediate surroundings very well,
such as sources of food, sources of threat etc. Nevertheless,
they do not have any overall idea of the global scene.Fig 1
depicts some examples of swarm behaviours in natures.

In 1986, Craig Reynolds implemented the first simulation of
bird flocking behaviour using an algorithm denoted as BOIDS
which was based on three principles [2].

• Velocity matching: Keep on par with velocity of neigh-
bors.

• Flock centering: Always steer to the centre of the group.
• Collision avoidance: Avoid colliding with the neighbors.

BOIDS used the above three rules to determine how they
would move and a combination of these simple behaviours
lead to the emergence of complex group behaviours. These
three rules, referred to in the literature as cohesion, separation
and alignment rules, are used even today for flocking simula-
tions. A global version of Reynolds work led to the design of
the original Particle Swarm Optimization (PSO) algorithm.

PSO is a stochastic optimization technique wherein each
particle updates its velocity towards the best performing par-
ticle by comparing its fitness value associated to the entire
swarm population globally [3] [4]. It has been effectively

978-1-5090-6367-3/17/$31.00 ©2017 IEEE 1839

utilized as a part of numerous applications, such as robotics
[5], stock market prediction, estimation of thyroid volume [6]
and eye tracking system [7]. It works perfectly well with
a single target operations, but when exposed to multi-target
scenarios, it is unable to breakaway from sub-optimality.

Fig 1. Swarm Behaviours in nature.

The parameters to configure a PSO algorithm includes:
• The number of particles
• Dimension of particles’ search space
• Range of particles’ search space
• Inertial, cognitive and social coefficients
• The number of iterations
• The stopping condition

The particles or robots have to find an optimal solution
by maintaining a communication with all other members in
the swarm. Each robot or particle follows the best performing
member in their group that is, the one that has obtained the
maximum success. The above parameters highly influence
how closely the solution meets the global optimum and the
intelligence of the swarm to obtain global best. Many extended
versions of the PSO have been suggested and developed
in the past for controlling a robot swarm to overcome the
problem of local solution and achieve the desired behavior in
SaR operations. Among the other proposed algorithms, the
Darwinian Particle Swarm Optimization (DPSO) [8] is the
first extended version of PSO which shows the capability to
get away from sub-optimal solutions by adopting a Darwinian
approach [9].

Some of the other solutions include a Bacteria Foraging
Algorithm (BFA) with PSO based approach for route planning
and distribution of multiple robots in an environment with non-
dynamic obstacles [10]. However, by using BFA the authors
were only able to enhance the local search. They carried out
the experiment with three robots but the mission did not have
any sub optimal conditions. Also, in their work they did not
consider collision avoidance or communication factor [11].
In [12], the authors implemented swarm aerial robotics using
modified PSO under ROS framework. They have considered
only single target scenarios in which the target object is either
stationary or moving with respect to the quad-copters.

Recently, Couceiro et al [13] extended their work on
optimizing the DPSO algorithm and came up with RDPSO
(Robotic Darwinian PSO) for multi-robot applications, such as

obstacle avoidance, dynamic path planning, etc. The authors
work demonstrates the applicability of the RDPSO algorithm
by dynamically splitting the robot population into smaller
groups, thereby decreasing the communication complexity
between the robots, while avoiding premature convergence.
This algorithm has been proven to be scalable to a large
population of robots. The swarm also does not possess any
central agent to coordinate with other agents, which is another
merit of the RDPSO algorithm.

II. SYSTEM DESCRIPTION

A. Robotic Particle Swarm Optimization (RPSO)

In RPSO a fitness function f(xn) is used iteratively to eval-
uate proposed solutions. Each particle remembers their local
best solution obtained and makes this information available to
its teammates. The algorithm tracks the global best solution
obtained by considering all particles.

Every particle or robot n navigates in a two dimensional
search space according to a position (xn) and velocity (vn),
which are highly dependent on the local (or cognitive) best
success X1 and global (or overall) best X2 success.

wn is the inertial parameter.
c1 is the cognitive parameter.
c2 is the social parameter.
r1 and r2 are the random weights ranges from (0,1).

The c1, cognitive component is the personal best known
success of each robot and c2, social component is the best
known success of the whole population or swarm.

In his work, Ventor [14] stated that a smaller value of c1 and
larger value of c2 enhances the execution of the algorithm. In
multiple target rescue missions, if the estimation of c2 is such
that it is much larger than c1, then it will drag every robot in
the swarm to a local solution from which they will not able to
escape since they behave like "visually impaired" adherents.
Conversely, if the value of c1 is much larger than c2, then it
makes every robot get pulled into its very own best position
which results in excessive wandering. Hence initial values for
c1 and c2 must be very carefully chosen.

B. Robotic Darwinian PSO (RDPSO)

1840

Robotic Darwinian PSO (RDPSO), an extension of RPSO,
takes into account obstacle avoidance factor and communica-
tion factor between the robots in the swarm. It dynamically
enables the creation of groups within the swarm, or other
swarms, using a reward and punishment mechanism. Hence,
RDPSO permits a decrease in the amount of required infor-
mation to be shared among robots [15].

In eq. 2, c3 is the coefficient of the obstacle restraint
component and c4 is the coefficient of the communication
component. X3 denotes the best obstacle avoidance position
vector. X4 denotes the best communication position vector. In
real life scenarios, we use parameters such as the intensity
of voice, temperature, radioactivity etc in SaR to rescue
the victims or humans [16]. In RDPSO, all the robots will
initially explore (either solitarily or in small groups) in random
directions until they receive a signal, say the sound of the
human voice or intensity of fire outbreaks. Once any robot
receives a known signal, it will compare the signal intensity
with all of its partners to see which robot detected the max-
imum signal intensity. For instance, the robot that is closest
to the victim will receive the maximum value of intensity.
This robot is treated as the best performing robot of the
swarm and will be rewarded by giving a partner robot. Other
robots that are socially excluded wander in random directions
until all the area has been covered. By this way, search and
rescue operations are performed. All parameters of RPSO and
RDPSO in 2D search space is illustrated in Fig 2.

Fig 2. RPSO & RDPSO components in 2D space.

C. Gazebo and Rviz

Gazebo [17] is a well-known simulator in Robot Operating
System (ROS) [18] which supports the open source evaluation
of robotic approaches, thus allowing to simulate complex
implementations like testing new algorithms, designing new
robotic models, etc. It also provides tools to analyze the
applicability of robotic algorithms. ROS visualization tool
known as Rviz is a tool for visualizing sensory data, for
example, camera data, data from distance measuring devices,
GPS information, etc. Rviz also displays the state transitions
occurring in an algorithm [19].

Fig. 3 Swarm of Husky Models in Gazebo.

Fig. 4 Multi-layered Grid Map.

The grid map used for simulation purpose is a well known
universal grid map, available in ROS library and developed
by Robotics System Lab, ETH Zurich [20]. The grid map was
designed in such a way that it is applicable for any robotics
implementation especially for autonomous navigation. Each
grid has a specific value associated with it which helps in
implementing various navigation algorithms. The grid also
provides multiple data layers signifying different parameters
such as elevation, variance, color, occupancy etc. as shown in
Fig 4.

Fig. 5. Intensity Map in Rviz.

For this work, we have used a single layer with color
intensity (for representing target) with a grid size of 40*40 m.
It also follows the VIBGYOR color spectrum where the red
color represents the maximum intensity and violet represents
the least intensity. The color of each grid cell represents the

1841

intensity of the signal at that point, which helps in tracking
the progress of the algorithm in a visual manner. Fig 5. shows
intensity map in Rviz where each grid represent an intensity
value.

III. EXPERIMENTAL RESULTS

The husky models, as shown in Fig.3, a popular unmanned
ground vehicle, from Clearpath robotics were used for simula-
tion in Gazebo using the two proposed algorithms; RPSO and
RDPSO. A comparison was done between the two algorithms
for a two victim rescue scenario and a four victim rescue sce-
nario with 30 trials for each case. The victims were assumed to
be static in all the trials. For the four victim rescue scenario,
eight robots were used. For the two victim rescue scenario,
four robots were used. Each phase of the simulation has been
described in the subsequent sections and main differences
between the two algorithms has been explained.

Fig. 6 Initial Stage of robots using RPSO in Rviz.

Fig. 7 Collision Stage of robots using RPSO in Rviz.

Fig 6 depicts the initial stage of the robots that are searching
for the maximum intensity target locations. Fig 7 shows how
the robots collided with each other before the final stage shown
in Fig 8. This is because the RPSO algorithm does not take
the communication parameter or obstacle avoidance parameter
into consideration. In both the cases, that is, in both the four
victim and the two victim rescue case, the RPSO algorithm got
trapped in a local-minima. As explained earlier, this is one of
the drawbacks of the RPSO that the simulation highlighted.
All the robots were trying to concentrate at a single region

from which they were unable to escape leading to a sub-
optimal solution. In SaR operations, this algorithm cannot
be used as the swarm will try to rescue victims only in a
single region while overlooking other regions. In contrast, the
RDPSO implementation converged to an optimal solution most
of the time.

Fig. 8 Final stage of robots using RPSO in Rviz.

Fig. 9 Initial stage of robots using RDPSO in Rviz.

Fig. 10. Final stage of robots using RDPSO in Rviz.

Fig. 9 depicts the initial simulation phase and Fig. 10 depicts
the finial or stopping stage of RDPSO algorithm, in which
one robot escaped from the global optimum and moved to
local optimum, thus ensuring every victim is rescued. The
simulation results in Fig 11 shows that the RDPSO seeks
out the optimal solution faster than RPSO. We have used ten
minutes as the stopping condition of this system. The RPSO
algorithm consumes a longer time to convergence for a single

1842

target SaR operations while the RDPSO consumes nearly half
of its time for the multiple SaR operations.

Fig. 11. Comparison of time taken by RPSO and RDPSO.

IV. CONCLUSION

To the best of the authors’ knowledge, this is the first work
to evaluate the RDPSO algorithm under the ROS framework
under a realistic simulator, such as Gazebo. Swarms of robots
pose numerous challenges for human operators, especially
when distributed algorithms with complex dynamics are used.
As such, enabling human operators to control robot swarms
is still an open problem. Using ROS and Gazebo, we present
the comparison of RPSO and RDPSO exploration algorithm
with multiple robots swarms in ROS visualization (RViz)
tool considering several real-world scenarios such as victim
identification by voice, localizing on fire source by temperature
sensing, identification of sources of radioactive leaks etc.

From the simulation results, one can clearly see that two
swarms each having two robots evolved from a single initial
swarm of four robots. This later split into two swarms of
three and one robot with the help of RDPSO’s rewards and
punishment mechanism. We used four and eight husky robots
for simulation of two real life scenario mission which can be
further extended to any number of robots.

We made an assumption that we already have the map of the
region to be explored but we do not have any prior knowledge
of the victim location in the map. We used the universal grid
map library to create the intensity map. The above results
show that the RDPSO allows the robot to escape from sub-
optimal solutions and overcome the problems in RPSO such as
its inability to detect multiple target locations and collisions.
Also, the performance of the RDPSO will not be affected
by the distribution of the actual target locations since the
algorithm makes no assumption about the targets.

V. FUTURE WORK

As a future work, we could move the work out of simulation
into the real world with a Husky robot swarm. We can also
perform comparison studies to see how RDPSO stacks up

against other swarm robot algorithms in the real world. In
this paper, we have assumed that the victim or gas leakage
or fire outbreak is static. This could be extended to handle
dynamic targets and an evaluation of the algorithms could be
done for this condition as well.

VI. ACKNOWLEDGMENTS

We wholeheartedly thank the researchers at AMMACHI
Labs & Ingeniarius,Lda for their helpful feedback and im-
portant contributions throughout different phases of this work.

REFERENCES

[1] Navarro, Inaki, and Fernando Matia, An introduction to swarm robotics,
3rd ed. ISRN Robotics, 2013.

[2] Reynolds, Craig W. "Flocks, herds and schools: A distributed behavioral
model." ACM SIGGRAPH computer graphics 21.4 (1987): 25-34.

[3] Kennedy, James, and Russell Eberhart. "Particle swarm optimization."
Neural Networks, 1995. Proceedings., IEEE International Conference on.
Vol. 4. IEEE, 1995.

[4] Du, Ke-Lin, and M. N. S. Swamy. "Particle swarm optimization." Search
and Optimization by Metaheuristics. Springer International Publishing,
2016. 153-173.

[5] Araujo, Andre, et al. "Integrating Arduino-based educational mobile
robots in ROS." Autonomous Robot Systems (Robotica), 2013 13th
International Conference on. IEEE, 2013.

[6] Geetha, K., and S. Santhosh Baboo. "Efficient thyroid disease classifica-
tion using differential evolution with SVM." Journal Of Theoretical And
Applied Information Technology 88.3 (2016): 410.

[7] Amudha, J., and K. R. Chandrika. "Suitability of Genetic Algorithm
and Particle Swarm Optimization for Eye Tracking System." Advanced
Computing (IACC), 2016 IEEE 6th International Conference on. IEEE,
2016.

[8] Couceiro, Micael, and Pedram Ghamisi. "Particle swarm optimization."
Fractional Order Darwinian Particle Swarm Optimization. Springer Inter-
national Publishing, 2016. 1-10.

[9] Couceiro, Micael S., Rui P. Rocha, and Nuno MF Ferreira. "A novel
multi-robot exploration approach based on particle swarm optimization
algorithms." Safety, Security, and Rescue Robotics (SSRR), 2011 IEEE
International Symposium on. IEEE, 2011.

[10] M. Lovbjerg, T. Krink, Extending particle swarms with self-organized
criticality, in: Proc. IEEE Congr. Evol. Comput., vol. 2, 2002, pp. 1588-
1593.

[11] Du, Ke-Lin, and M. N. S. Swamy. "Bacterial Foraging Algorithm."
Search and Optimization by Metaheuristics. Springer International Pub-
lishing, 2016. 217-225.

[12] Ma’sum, M. Anwar, et al. "Autonomous quadcopter swarm robots for
object localization and tracking." Micro-NanoMechatronics and Human
Science (MHS), 2013 International Symposium on. IEEE, 2013.

[13] Couceiro, Micael S., et al. "A fuzzified systematic adjustment of the
robotic Darwinian PSO." Robotics and Autonomous Systems 60.12
(2012): 1625-1639.

[14] G. Venter, Particle swarm optimization, in: Proceedings of 43rd AIAA/
ASME/ASCE/AHS/ASC Structure, Structures Dynamics and Materials
Conference, 2002, pp. 22-25.

[15] M.S. Couceiro, N.M.F. Ferreira, J.A.T. Machado, Fractional order Dar-
winian particle swarm optimization, in: 3th Symposium on Fractional
Signals and Systems, FSS 2011, Coimbra, Portugal, 2011.

[16] Couceiro, M. S. (2015). An overview of swarm robotics for search
and rescue applications. Handbook of Research on Design, Control, and
Modeling of Swarm Robotics, 345.

[17] Koenig, Nathan, and Andrew Howard. "Design and use paradigms for
gazebo, an open-source multi-robot simulator." Intelligent Robots and
Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International
Conference on. Vol. 3. IEEE, 2004.

[18] Quigley, Morgan, et al. "ROS: an open-source Robot Operating System."
ICRA workshop on open source software. Vol. 3. No. 3.2. 2009.

[19] Kam, Hyeong Ryeol, et al. "RViz: a toolkit for real domain data
visualization." Telecommunication Systems 60.2 (2015): 337.

[20] Fankhauser, Peter, and Marco Hutter. "A universal grid map library: Im-
plementation and use case for rough terrain navigation." Robot Operating
System (ROS). Springer International Publishing, 2016. 99-120.

1843

